PTC: The Product Development Company

PTC develops, markets and supports software solutions that help manufacturers get superior products to market before their competitors. Working with PTC, manufacturers are transforming their product development into a strategic weapon that builds market share, customer loyalty and profitability. PTC is the world’s largest software company with a total commitment to product development. PTC extends its leadership through PTC Global Services and leading systems integrators, resellers and strategic partners. Founded in 1985, PTC employs 4,700 people in 175 offices around the world, and serves more than 30,000 customers. Headquartered in Needham, MA, USA, PTC trades on the Nasdaq Stock Market under the symbol PMTC.

140 Kendrick Street
Needham, MA 02494
USA
Phone: 781-370-5000
Fax: 781-370-6000
http://www.ptc.com
Marlborough, MA—Engineers sometimes joke that the real way to get a product developed quickly and cheaply is to cancel the project. That was literally the case for a team of self-described “rogue” engineers at Compaq, who willed the AlphaServer DS10L ultra-thin, high-speed server into existence after the initial proposal and funding request had been rejected.

Engineering Manager Richard Dischler and Systems Engineer Mike Rolla came up with the idea for the new server by looking at where the market was going for products like the company’s AlphaServer DS10, a powerful, high-speed server based on the 64-bit Alpha microprocessor. It is designed for floating-point intensive tasks, such as computer animation, that can be partitioned among multiple machines to achieve higher throughput.

“We knew there was a market out there looking for pure processing power at a lower cost than the DS10. Basically all some people want is a CPU, with none of the extra stuff around it,” says Dischler.

Size matters. Dischler and cohorts Rolla and Mechanical Engineer Jeff Lewis began thinking about how they could reduce the size and cost of the original AlphaServer currently under development, while still offering the power that customers craved. They figured if they could reduce the 3U (5.25-inch) height of the DS10 by two thirds to create a 1U (1.75-inch) tall machine, they could fit an unprecedented 40 machines in a single rack. By also reducing the amount of memory and offering fewer bells and whistles, they’d have the ideal low-cost, high-density server.

Although management at Compaq initially declined to fund the project so that engineers could focus 100% of their efforts on the about-to-ship DS10, they didn’t discourage work on the DS10L. “There were a few winks as we were being told to stop work,” recalls Rolla. In fact, engineers say that Compaq’s culture actively encourages skunkworks-type projects.

Having no funding and working on their own time, the team knew that if they were to be successful they would have to leverage as much as they could from the DS10 and other products. “Our goal was to prove we could use the existing Alpha motherboard, and steal working clandestinely after hours, the engineers who developed Compaq’s AlphaServer DS10L computer even rummaged through company dumpsters at night, searching for spare parts to use in prototypes.

Left to right: Systems Engineer Michael Rolla, Engineering Manager Richard Dischler, and Mechanical Engineer Jeff Lewis.

Working outside the BOX

On their own time and with no funding, some creative engineers at Compaq came up with a design for a new server. The skunkworks project is now a multi-million dollar global business.

Karen Auguston Field, Chief Editor
and borrow from other programs in order to
cobble up a low-cost, high-performance 1U
Alpha machine," says Rolla.
That decision turned out to be both a
blessing and a curse. The benefit of using a
common motherboard was that it minimized
risk and qualification efforts by allowing
engineers to use a subset of the already qual-
ified DS10 peripherals. And since the two
boards would be identical (with the excep-
tion of two items installed at final assembly),
manufacturing would essentially have to
build just one board instead of two.
But the fact that the DS10’s mother-
board design was essentially frozen meant
that the team working on the new server
had to be really, really creative. “To get to
1U, all components taller than 1.75 inches
had to be redesigned (see chart), including
memory DIMMs, which are 1.755 inches
tall,” says Rolla.
Similarly, they had to squeeze the height
of the power supply down from 3.4 to under
1.75 inches. Helping matters was
the fact that it would only need to
generate just 150W, as opposed to
the 300W power supply used in the
DS10. “At 1.8 inches tall and just 74
 cubic inches, the new power supply
is tiny. Since we budget about 25W
per PCI option, it really helped that
we were offering just one option
instead of four,” says Power Supply Engineer
John Arduino. With no funding to develop a
power supply from scratch, Rolla tackled
the problem by scouring the Internet for vendors.
Incredibly, Rolla found a power supply that
required only minor modifications.
Chilling out. The biggest challenge by
far, however, was thermal management.
Given the low profile of the box and tight 1U
spacings of units in a rack, Thermal Engineer
Bob Sullivan and Acoustic Engi-
neer Bob Hellweg wondered how
they would get rid of all the heat
generated by the powerful Alpha
CPU chip. Not to mention avoiding
a design that would sound like a
747 taking off. The chip dissipates
74W at 616 MHz, a full rack of 40
units dissipates more than 8,000W.
Using the existing blower/heat sink, which
stands 2.75 inches high and requires an addi-
tional 0.5-inch clearance for airflow, was out
data.” Power Supply Engineer
John Arduino. With no funding to develop a
power supply from scratch, Rolla tackled
the problem by scouring the Internet for vendors.
Incredibly, Rolla found a power supply that
required only minor modifications.
Chilling out. The biggest challenge by
far, however, was thermal management.
Given the low profile of the box and tight 1U
spacings of units in a rack, Thermal Engineer
Bob Sullivan and Acoustic Engi-
eer Bob Hellweg wondered how
they would get rid of all the heat
generated by the powerful Alpha
CPU chip. Not to mention avoiding
a design that would sound like a
747 taking off. The chip dissipates
74W at 616 MHz, a full rack of 40
units dissipates more than 8,000W.
Using the existing blower/heat sink, which
stands 2.75 inches high and requires an addi-
tional 0.5-inch clearance for airflow, was out
data.” Power Supply Engineer
John Arduino. With no funding to develop a
power supply from scratch, Rolla tackled
the problem by scouring the Internet for vendors.
Incredibly, Rolla found a power supply that
required only minor modifications.
Chilling out. The biggest challenge by
far, however, was thermal management.
Given the low profile of the box and tight 1U
spacings of units in a rack, Thermal Engineer
Bob Sullivan and Acoustic Engi-
eer Bob Hellweg wondered how
they would get rid of all the heat
generated by the powerful Alpha
CPU chip. Not to mention avoiding
a design that would sound like a
747 taking off. The chip dissipates
74W at 616 MHz, a full rack of 40
units dissipates more than 8,000W.
Using the existing blower/heat sink, which
stands 2.75 inches high and requires an addi-
tional 0.5-inch clearance for airflow, was out
data.” Power Supply Engineer
John Arduino. With no funding to develop a
power supply from scratch, Rolla tackled
the problem by scouring the Internet for vendors.
Incredibly, Rolla found a power supply that
required only minor modifications.
Chilling out. The biggest challenge by
far, however, was thermal management.
Given the low profile of the box and tight 1U
spacings of units in a rack, Thermal Engineer
Bob Sullivan and Acoustic Engi-
eer Bob Hellweg wondered how
they would get rid of all the heat
generated by the powerful Alpha
CPU chip. Not to mention avoiding
a design that would sound like a
747 taking off. The chip dissipates
74W at 616 MHz, a full rack of 40
units dissipates more than 8,000W.
Using the existing blower/heat sink, which
stands 2.75 inches high and requires an addi-
tional 0.5-inch clearance for airflow, was out
data.” Power Supply Engineer
John Arduino. With no funding to develop a
power supply from scratch, Rolla tackled
the problem by scouring the Internet for vendors.
Incredibly, Rolla found a power supply that
required only minor modifications.
Chilling out. The biggest challenge by
far, however, was thermal management.
Given the low profile of the box and tight 1U
spacings of units in a rack, Thermal Engineer
Bob Sullivan and Acoustic Engi-
eer Bob Hellweg wondered how
they would get rid of all the heat
generated by the powerful Alpha
CPU chip. Not to mention avoiding
a design that would sound like a
747 taking off. The chip dissipates
74W at 616 MHz, a full rack of 40
units dissipates more than 8,000W.
Using the existing blower/heat sink, which
stands 2.75 inches high and requires an addi-
tional 0.5-inch clearance for airflow, was out
Chilling out. The biggest challenge by
far, however, was thermal management.
Given the low profile of the box and tight 1U
spacings of units in a rack, Thermal Engineer
Bob Sullivan and Acoustic Engi-
eer Bob Hellweg wondered how
they would get rid of all the heat
generated by the powerful Alpha
CPU chip. Not to mention avoiding
a design that would sound like a
747 taking off. The chip dissipates
74W at 616 MHz, a full rack of 40
units dissipates more than 8,000W.
Using the existing blower/heat sink, which
stands 2.75 inches high and requires an addi-
tional 0.5-inch clearance for airflow, was out
3U rack mount
Height: 5.15 inches

1U rack mount
Height: 1.75 inches

In order to leverage the existing DS10 design, engineers had to figure out how to
fit everything into a box only one third the height of the original.

PCI riser card
The original 4-slot PCI riser card would not fit in the DS10L enclosure. Although a
one-slot PCI riser fit, engineers needed a cross-member support structure to
brace the card. Mechanical Engineer Jeff Lewis solved this problem by designing
a unique plastic stiffener, which anchors to the CPU heat sink. It supports
the riser card and allows insertion of a PCI option without any resultant damage to
the riser card or the connector on the motherboard. Engineering Manager
Richard Dischler also came up with a memory riser card that allows memory
DIMMS (which are 1.755 inches high) to be mounted sideways.

Adapter module and flex etch
With no room to accommodate the existing parts, Systems Engineer Michael
Rolla combined two separate components in one space-saving part. Since both
components had already been qualified on prior products, all he had to do on
this low-risk design was pull up a new part number and mark up existing
schematics and drawings.

CPU blower/heat sink
The CPU blower/heat sink on the DS10 is 2.75 inches tall and requires a 0.5-inch
clearance for airflow. Engineers had to design a smaller new heat sink that
would dissipate the smaller heat generated by the close spacing of units. The
solution was a more compact, lower-profile heat sink with a greater surface
area, closely-packed convoluted fins, and a side-mounted blower. Engineers
also added convective cooling by locating three 40mm fans at the front of the
unit that build up pressure and one 40mm exhaust fan at the rear. Airflow baf-
fling channels air into the blower/heat sink, ensuring that the blower does not
recirculate on itself and ingest hot air.
Evacuate the hot air.

In the new cooling system, three rear-mounted fans build up pressure inside the box while one rear-mounted fan exhausts the air. An airflow baffle on the patent-pending CPU heat sink ensures that the blower does not recirculate on itself. To further improve heat transfer, the top of the CPU has a copper-tungsten heat spreader with two studs. The heat sink, which has a machined surface flatness of 0.005 inch, is bolted to the package with a torque of 20 inch-lb. A thin sheet of thermally conductive grafoil is sandwiched between the blower and the heat sink.

To make room for a full-length PCI card, engineers removed the heat sink from the CPU regulator and placed a black label on it. This label primarily provides PCI-to-regulator “short circuit” protection. Through “fan fail” condition (limited airflow) testing, Sullivan found that the label also increased the surface emissivity of the CPU regulator, lowering the surface temperature an additional 4°C via natural convection. With 40 lowerings the surface temperature an addi-

A global product. The fact that engi-

neers were able to meet all goals on this skunkworks project in less than a year and ultimately help to create a multi-million dol-

lar business is all the more remarkable when considering the product’s global reach. Not only did engineers have to design the DS10L to meet numerous international standards, many of the components inside are sourced from overseas companies (below).

Global Sourcing on the DS101

1. Fans Japan/Taiwan
2. CPU and fan China/Taiwan
3. Chassis Hong Kong/Mainland China
4. PCI riser card Scotland
5. Power Supply China/Taiwan/Mexico
6. Heatsink U.S.

Unbelievably, the team was able to keep the project on track, even with no hard dates on the schedule or formal team meet-

ings early on. They did discuss the project during their regularly scheduled Monday meetings, but only to go over the nagging issues such as, “Still need to know if the disk overheats.”

“T”o be successful, you can’t bother people with the little things,” says Dischler. “Leave them alone and let them do their job.”

And for the engineers involved in this project, they wouldn’t have had it any other way. “If squadrons of people had worked on this product, it probably would have taken twice as long to develop and cost twice as much to produce,” Rolla says. “And we would have only sold half as many.”

Compaq specs components and parts for the DS10L from all over the world. Key to managing this effort: Constant com-
munication via email, voice mail, and FAX, weekly, late-night conference calls; and a dedicated FTP site for dropping CAD drawings, database files, and other documents.

How to pull off a skunkworks project successfully

Here are some tips from the engineering team that developed Compaq’s DS10L, computer in the back room of their lab. Although the company pro-

vided no initial funding for the project, engineers say the environment at Compaq fos-
ters innovation and creativity and rewards them for pursu-
ing projects on their own time:

1. Consider yourself freed from the constraints of corporate bureaucracy. With no one in the way to slow you down, you can engineer as you see fit, make instant design decisions, and work at your own pace.

2. Choose the most talented, most experienced engineers for the team. Then hire them.

3. Leverage existing resources, including current product designs, standard part numbers (Many of the parts on Compaq’s DS10L are common to other products), friends in other departments, vendor relationships, test rigs, etc.

4. Trust your intuition—you won’t necessarily have the time or resources to do all the testing you would like to do.

5. When you are ready to show management your creation, you can’t just impress them—you’ve got to literally blow them away.

6. Never, ever forget that failure is not an option.

GLOBAL INNOVATION AWARD: COMPAQ

1. Did you find this article useful?
2. If so, let us know. Enter No. 526